AFRL-DE-PS-TR-1998-1060 AFRL-DE-PS-
TR-1998-1060

DEVELOPMENT OF VISUALIZATION MODULES
FOR ICEPIC

Kimberly Robinson

August 1998

Final Report

AIR FORCE RESEARCH LABORATORY
Directed Energy Directorate

3550 Aberdeen Ave SE

AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

roemmmezems 1 999041602 g

AFRL-DE-PS-TR-1998-1060

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or corporation; or
convey any rights or permission to manufacture, use, or sell any patented invention that may
relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,
including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify AFRL/DE, 3550 Aberdeen Ave SE, Kirtland AFB,
NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

GERALD E. SASSER 111, Capt, USAF
Computational Physicist

FOR THE COMMANDER

MARK R. FRANZ, Lt SUSAF R. EARL GOOD, SES

Chief, High Power Microwave Division Director, Directed Energy Directorate

REPORT DOCUMENTATION PAGE OMB N, aveors8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data nesded, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directs for Inf jon Operations and Reports, 1215 Jeff 1 Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
18 Aug 98 Final Report, Jun-Aug 98

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Development of Visualization Modules for ICEPIC

6. AUTHORI(S)
Kimberly Robinson

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFRL-DE-PS-TR-1998-1060

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/DEHE
3550 Aberdeen Ave
Kirtland AFB, NM 87117

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 Words)

AVS/Express Developer's edition, by Advanced Visual Systems Inc, is a complex data visualization kit consisting of several
hundred different modules, as well as a couple different editors, each serving a somewhat different function. In order to use this
program, extensive training is required. In hopes of making things easier by designing a system with which people not familiar with
the specifics of AVS can create visuals fairly quickly, an alternate method was developed. Through the custom designing of new
modules specified to do certain things simply, graphs and movies are now considerably easier to make and include their own, easy to
use, interfaces. This assists the computationalists at the Center for Plasma Theory and Computation by allowing them to view the
results of their simulations more easily.

14. SUBJECT TERMS

Plasma Physics
AVS/EXPRESS

15. NUMBER OF PAGES
22

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited

NSN 75640-01-280-6600

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

ii

Table of Contents

LiSt Of FIGUIES ..uinininieieieiiiiiiiieiiiiinieiieiirieeeetrnensneensnraensasasesnsssassssssensnnne iv
| T o) 0 1o [T iv
INEOQUCHION ..uieiiiiiiiiiii i i ieeieretieetteetieeeenesasensnecnssnnssnsensensessennennsenee 1
AVS OVOIVIBW. .. eiiiiiiiiiiieieiiiereteteteeenen et eentsseeeseesencnsnsasensnsnsanensnnnnns 1

TOOIS aNd MeEthOAScveeiueiiiiiiiieiiiirieeiiiieiteetereeeesnsensasensansnnensenses 3

Converting ICEPIC data to AVS field format..........cceeuveninieienrirecenininrerenennn. 5
CONCIUSION ..ueueirieiieiiiiiie i rerreeneenenrncnentnensnesnesseasesnsescnsasssananrnnnns 14
ACKNOWIEAZEMENTS. . .iuiuiureieiiiiietiieieeeterienererreenentaesesssenenenencsnsnenensnes 14
| & () (3 111 SRRSO 15

iii

List of Figures

FIGURE 1: EXAMPLE OF LIBRARY WORKSPACES

FIGURE 2: THE READ MESH NETWORK

FIGURE 3: RADIAL ELECTRIC FIELD IN THE MAGNETICALLY INSULATED LINE
OSCILLATOR ‘

FIGURE 4: DATAMAP CONTROL PANEL

FIGURE 5: UI PANEL

FIGURE 6: WRITE_IMAGE PLUS STRING 1

AW

=0 00

List of Tables
TABLE 1. THE COLOR OF THE LINES CONNECTING MODULES CORRESPONDS TO THE TYPES
OF DATA WHICH MAY BE TRANSMITTED ALONG THEM. 2

iv

Introduction
The computationalists at the Center for Plasma Theory and Computation (CPTC) run simulations

with plasma physics software that create very complicated data. The easiest way of understanding this data
is through the use of images created directly from the data. For this purpose, they purchased a software
package called AVS/EXPRESS produced by AVS (Advanced Visual Systems), Inc [1]. It is multi-
platform but runs very well on a Silicon Graphics machine due to the advanced graphics rendering
hardware on that machine. Unfortunately, the learning curve associated with this software is fairly steep,
so that a significant commitment of time is required to make even simple graphics. In ordeér to significantly
reduce the time required for members of the CPTC team to be able to create useful graphics, graphical
interfaces and custom modules were developed that were specially tailored to the data created by the CPTC
software packages. The process of creating specialized modules for the scientists took a bit of time, some
C-coding, and a bit of creativity. Now there are modules that work exactly how they are needed to and
contain specific interfaces that negate the need for one to understand the details of how AVS works. In this
paper terms that are specific to AVS modules or pathnames will be Arial font while the underined Arial

represents modules that have been built, and terms that have a unique meaning in AVS will be in italics.

AVS Overview
The AVS software is based on groups of objects called modules. These modules often deal with

data formatted in the AVS field foﬁnat, which consist of a mesh combined with cell data. The AVS flelds
are not always the most convenient format to use. A field file can be read into AVS with the use of the
AVS Read_Field module, but it has to be in a very specific format that involves a good deal of data post-
processing before it can enter AVS. There are several other methods of reading in data that work better but
‘most are still difficult to work with. The simplest of these is through the creation of a File_Iimport
module. File_lmport modules may be created and customized to the format of the files that are to be
read in. Such modules read in multiple columns of data and export them as arrays. They can also be

modified for specific files.

To build a File_Import module, a Workspace in the User_Workspaces library must be

selected (see Figure 1). Usually, the User space should be reserved for modules that include user-provided

source code. Under the Object menu on the menu bar is Add File_lmport_Module. This opens an

interface that prompts the user through the process, which includes naming the module, adding variables

and assigning those variables to columns of data. It also wants to know if the file is ASCII or binary, which

does make a difference. There is a bug in the ASCII reader: it prompts for how many bytes to skip, which

does not work, so header lines do not work in ASCII files. It should be noted that these modules will only

have the function of reading in data (user specified source code cannot be included.)

Data are passed and modified in AVS through a series of modules in a network. After the addition

of several modules, this looks like a tangle of colored spaghetti. Each module has colored ports of what it

can take in or put out. Modules are connected through colored tubes that eventually get tangled and

provide a confused mess to work with. In general, the colors mean specific things, but depending on the

module, a color can mean something different; black, for instance, can be several different things. Usually

the colors correspond to the types of data as shown in Table 1.

Table 1. The color of the lines connecting modules corresponds to the types of data
which may be transmitted along them.

Type of data Color Example
Renderable image Red Mesh output to viewer.
Field Blue and Black stripes; Output of mesh to input of data module
All black; (orthoslice).
Blue, Black, green stripes
Primitive data type All black (single values, not fields)
Float data type Brown Arrays of floats come from File_Import
Int data type Pink modules.
String data type Blue
Parent connection Bright green
Pastels Used primarily in UI

Ul connections

Figure 1: Example of Library Workspaces
Tools and Methods

AVS Applications are built in the network editor (An example is provided later in Figure 2).
Typically, the first item in an AVS nefwork is a module that is used to read in the data file. This can be
hard to do for someone unfamiliar with AVS. As described above, the File_lmport_Module is the
simplest way of reading in a file with data in columns. The next step is to do something with that data.
Most applications will require‘a mesh to be built; it is similar to a fie/d and will often work the same way.
A mesh may be created by inputting coordinate information into the appropriate module found under
Main.Field_Mappers.Mesh_Mappers. There are several types of meshes that can be used, but all are
fairly straightforward. A point mesh tends to work best for plotting scattered particles. Where to go from
here depends on the type of plot desired. AVS can make many different kinds of plots, all requiring
different kinds of input. Images that are of particular interest to researchers at CPTC include contours of
electric and magnetic fields, and the movement of particles through complex geometric shapes. Those
plots will be focused on, since they were the ones developed.

Several tools were developed to visualize data produced by the plasrﬁa physics simulation
software, ICEPIC [2]. ICEPIC is a particle-in-cell (PIC) code that was developed at the Air Force Research
Laboratory (AFRL) primarily to assist in the development of high power microwave sources. ICEPIC
produces a variety of data sets: each in independent files. These files include representations of the device
geometry, electric and magnetic field information for all of the computational domain, charged particle
positions and velocities, electrical current, transmitted power, etc. One of the projects accomplished this
summér was a movie, which showed several of these data sets at once and their evolution with time. This

allowed users to see the interaction of the data sets, giving them a “big picture” view of the simulation.

A picture of the geometry may be generated by viewing a quads output file. This file contains a
series of quadrilaterals (four points in a plane) which are created by checking all of the faces of each cell
within the problem and outputting those faces which lie on a physical boundary. The quads file is reduced
to a workable size by a C code, quadreduce, written by Jerry Sasser of CPTC. 1t is read in using a macro
(a cbllection of modules) called GReadRFW built by Kent Eschenberg from the Army Corps of Engineers
Waterways Experiment Statioh (CEWES) Major Shared Resource Center (MSRC) in Vicksburg,
Mississippi. GReadRFW includes a module built from C code with the Add_Module function that reads
the geometry file and puts it into a point mesh format.

A PIC code tracks charged particles as they are moved through a computational mesh under the
force of electric and magnetic fields. It is often interesting to view the location of these particles with
respect to the device boundaries. Dr. Eschenberg also wrote a C program that makes this process much
more efficient. Due to the number of particles that appear at each subsequent time step, around 1x 10°, it
becomes very time-consuming to read them in as point meshes one step at a time, so that it has to read and
map every particle over and over again. The RF Particle Counter (rfpc) pre-processor breaks the problem
domain into a 256x256x256 mesh of boolean data points. Each point is set to 1 if at least one of the
particles exists in that region and 0 if none do. This array of booleans is then created for each time step and
stored in a new file, which takes up considerably less space than the original data files. The rfpc program
allows the Loop, which controls the movie, to run much faster. Those two modules are the basis of the
development that is covered here.

Another image that was produced was a 2-dimensional contour plot of the radial electric fields in a
cross-sectional cut through the volume. This technique is easily modified to view any component of the
electric or magnetic field. This process is more complicated because the modules involved require an AVS
field as input (in particular, one with a rectilinear or uniform mesh.) The electric field data output by
ICEPIC is not compatible with the AVS field format and requires significant postprocessing. To
understand the format of the electric field data consider the following example. The computational space in
ICEPIC forms a parallelepiped (like a shoebox). This space is broken into rectangular cells by defining a
grid as the intersection of an x-mesh with a y-mesh and a z-mesh, where each mesh is a 1D array that

describes how that direction is to be divided. Now suppose that the device of interest is actually a cylinder

which fits within the computational space. ICEPIC only performs computations on cells which fall within
the physical domain (in this case the cylinder, which has stair-stepped edges since the cells are rectangular)
and no memory is allocated for the other cells. When ICEPIC outputs the electric field‘data, it goes
through its list of real cells and prints the cell position (%, y, z) and then the components of the electric field
(Ex, Ey, E,). This is very different from the field format which would expect all of the x-mesh values, all of
the y-mesh values, all of the z-mesh values, and then electric field values for every cell (including those

~ outside the cylinder since AVS in not aware of its éxistence) in a particular order. Since reading in the files
as a File_lmport_Module was really too simple a format in this case, something else had to be created. It
was necessary to build a new module, from scratch. This is similar to building a File_Import_Module: a
library, preferably User, must be selected and the command (Add_Module) is found under the object
menu. The interface prompts for variables and their roles in the module, but then it allows for the insertion
of source code. Before generating source code, it is best to allow the new module interface to create a
source code template given the desired inputs to and outputs from the module. This is done by clicking on
edit source in the last window of the Add_Module tool before a file of the expected name exists. The
template will contain all of the necessary Application Program Interfaces (APIs) required to communicate
with AVS. In creating the module it is important to think ahead and carefully design the module. It is
more difficult to add new APIs after the template has been created. These modules can be written in C,

C++, or Fortran; the language option is the first thing that appears on opening the build module interface.

Converting ICEPIC data to AVS field format
As mentioned above, there are two steps involved in creating an AVS field: generating a mesh and

assigning data to the mesh. The meshes that come from ICEPIC have to undergo several changes to get
into AVS. Three files, xmesh, ymesh, and zmesh combine to make a range of values which may be
contained in the ICEPIC field data file. Those are read into the network (see Figure 2) with three separate
File_Import_Modules named read_mesh. Each array is interleaved with itself with the
interleave_3_arrays module from Main.Mappers.Combiners. Finally, those three arrays are catenated
to form an [n,+ny+n,][3] array of points that define the mesh that will be used in the AVS field. This is
done with the concat_3_arrays module, which is found in the same menu as the interleave module. It

does not matter if the three mesh dimensions are different because the interleaving takes care of that.

Figure 2: The read mesh network
The electric field data are read in with a custom module called read data that reads in every line

of the ICEPIC electric field file (x, y, z, E,, E,, E,) and returns a single 1D array with all of this information
grouped together. This array is then inserted in a custom module called Fill_up_array along with the mesh
arrays. Within this module a large 1D array (n, x n, X n,) is created to contain the data for the AVS field.
This array is filled by using the position of the cell (x, y, z) to determine the indices in the mesh (x=x;, y=y;,
z=z;) which are used to inset the data into the array in the following way:

Data [i+j*n,+k*n.*n,] = Ex (at x=x;, y=y;, 2=z
In this example only one element of the electric field is used, which could be used to create an AVS field
with scalar data (some of the AVS modules require that the data be scalar while others require vector data.)
The format for vector data would be:

Data [(i+j*n,+k*n*n,)*3+m] = Eq, (at x=x;, y=y;, 2=2/)

Figure 3: Radial electric field in the Magnetically Insulated Line Oscillator

Before the data are inserted in the large data array, the elements of the array are initialized to a value that is
larger than any of the data (this value is referred to as the null value). This will be used to take advantage
of several useful AVS filter modules. The AVS field is created by piping the mesh array and the data array
into a Rect_Scalar_field module, which creates a field consisting of a rectilinear mesh and scalar data.
This module also requires dims, which is an array of the three mesh sizes. Points is the 2D array of the
mesh points. Data is what came out of the Fill_up_array module. In this case it should be scalar, so E,

was chosen.

The Rect_scalar_field module outputs a field that can be fed into a module called orthoslice,
under Mappers. Orthoslice shows a 2D plane of data in a cross-section which may be chosen to be in any
of the 3 directions and may cut along any mesh point. If the shape of the object being simulated is not
rectangular (for example, the cylinder discussed earlier), there will likely be null values surrounding the
data that is wanted. These can be removed by using the threshold module, under Main.Filters. This was
the purpose of the pre-initialization of the data array discussed above. When the null value is set
everything with that value will disappear. The output of threshold feeds into orthoslice and orthoslice to
the Uviewer (using the red pipe). The Uviewer should show a 2D plane colored in the shape of the device.
This can be displayed over the device geometry by adding a GReadRFW module. Remember that when
working with multiple images care must be taken not to edit the size or position of one of the images if it is
important that they have a fixed position. This lesson is easily learned the first time a project has to be
restarted after accidentally editing only one object’s size or position. The results of an orthoslice and an
image of a device are shown in Figure 3, where this is an early time step for the Magnetically Insulated
Line Oscillator (MILO) [3].

The colors chosen for the contours are specified in the datamap. The colors are scaled to the data
and if the null value used to preinitialize the electric field array is much larger than the real data, the image

will be shaded entirely in one color. This

N
i

%
hEnRe
S BRI

can be taken care of but should be done
carefully. It is not a good idea to delete the
data map. There is a button at the bottom of

the Uviewer window entitled “select

object”. It brings up a menu of the modules
that are linked directly to the viewer. This
makes it possible to change the properties of
individual objects. It also makes it possible
to destroy the project fairly easily if
something is moved separately when it
should not be. Select orthoslice in the
object menu and datamap editor in the
editors menu on the menu bar. The
datamap appears in the viewer interface
window (See Figure 4). The next
modification depends on where the data are
in the range. If the data consist of small
values, on the lower end of the, an

additional range will work well; select

Add_Range. This gives the whole range of

Figure 4: Datamap control panel the current map to the colors in the reduced

data range. There is a pop-up sub-menu in the middle of the editor box. One of those options is Edit
Range/Data. It provides an interface that includes a sub-range. Toggle the box that gives a sub range. It

has values from the file it read. Play with the min and max of those values until they correspond to the

Figure §: Ul panel

range of the real data. If the data are
toward the middle of the range, add a sub-
range, but not an extra range. Another
option is to change the colors with the Edit
Color sub-menu. Control point 0 (the
slider above the menu) represents the data
min while control point 1 represents the
color at the data max. If the 256 range does
not work for whatever reason, under Edit
Range/Data is a slider that will reduce the

colors in the range.

A very nice trick that allows other
objects (such as the device geometry) to be
seen through the slice may be found in the
Object editor, under the Editors menu in
the Uviewer. The orthoslice must still be
selected. Under Properties.Surface are
several sliders that control the surface
properties of the object. One of these is
opacity; reducing this makes the slice
somewhat transparent so that it seems to be

more a part of the geometry. The

object menu can also change the color of the object and the jitter, which layers things in the viewer,

allowing things to be seen or not seen through another object (this is often useful when working with

particles).

In order to make the modules more user-friendly, user interfaces were added using the AVS

User Interface (UT) kit. This kit allows the user to create an interface similar to those on the AVS

modules. It provides a series of panels, buttons, sliders, and type-in areas to get the information to the

modules that require it. Each module that was created for this project has its own interface so that it can
be used with very little knowledge of AVS. For example, Figure 5 shows the Ul for the macro which
reads the electric field data.

Quadrilateral and contour plots have already been discussed, but there are many more
visualization methods available in AVS. Many of the 3D plots can be found under Main.Mappers. The
annotation and graphing kit takes care of the 2D graphs. AGGraph creates a 2D line plot based on an
array of y values. X values can be provided but are not necessary. AGGraph comes in various formats
(cartesian, polar, bar charts, etc.) along with all sorts of axes and legends. There are some difficulties in
combining an AGGraph with 3D images. Whenever a 2D graph is put in the same viewer with a 3D
object, it blinks and then disappears. It turns out that this is a problem with the hardware rendering. It
works fine with the Uviewer that supports 2D and 3D and with software rendering toggled.

An example of an application requiring the 2D graph is the changing power output of the device.
Making this graph change in time (along with the other visuals) provided some unique challenges. The
goal was to make it loop through the array of data so that it would be animated, presenting a problem that
could not be fixed with the existing modules. The module that was developed used the count variable
from the loop module to set the size of the array that would be read in. By giving the graph module the
entire x array, but only the partial y array (up to the loop counter), it drew the graph as the loop
incremented giving the impression of an animation. There is also a string variable that allows the color
of the graph to be changed.

Another module that Dr. Eschenberg built is a TimeBar that represents the location (i.e. the
time in the simulation) in the loop by changing the color of a bar from gray to red with the option of red
to green at a certain value as it moves along. A small arrow moves ahead of the red section according to
the loop count.

Lights, Camera, Action: Making movies with AVS

There are two ways of making a movie with AVS. One involves creating images in AVS one at

a time and saving them as gif or jpg files and then using additional software to catenate the images into a

movie. The other came built into the most recent edition of AVS. It does not work quite as well for data

10

©

movies. It is really more for making movies of alterations to the view of the data set, such as a fade in
or a rotation rather than altering the data itself. Things to consider before saving the images include
lighting, which will not be as good in the image as it appears on the screen, so consider adding more
light. The positioning needs to be correct as well; it is sometimes better to rotate and translate objects
using the Transform editor (in the editors menu of the viewer) rather than moving them with the mouse.

If there is

3 “““m“
S
AR

S

R

g%:i““‘ 3
“}Q‘M @{

Figure 6: Write_Image plus string
a problem during the course of the animation (program crashing or spontaneous resizing of the image) then

it is easy to return to the exact same settings.
Method 1
This method uses a Loop module and is appropriate for displaying data that change with time. An
example network is shown in Figure 6. Under Main.|O is a module called Write_Image, which is exactly
what it does. Its interface contains a slew of possibilities for the kind of image that can be exported. It
does not automatically change the necessary options, like Bits per Pixel when the image type is changed. It

also needs a filename, which is where AVS tricks become necessary. There may be another way to do this,

11

but this works. A string from StandardObjects.parameters will change the filename as the loop
increments. This syntax is very important. (See Figure 6)

=> ("/path/name." + .Loop.count)
This will access the count variable and attach it to the end of the file name with each iteration of the loop.
Now the Write_Image module must be changed to read that string. Right clicking on the Write_Image
module will bring up a menu. Parameters is the least confusing choice (see Figure 5). This displays
(simply) what is inside the module. There will be a link (with an icon like a knot) called “filename”.
Opening filename will reveal a reference to something within Write_Image. Delete it. In order to get its
value from the string parameter, the reference should be changed to: .

<-<-string.

That tells filename that it has to go up two levels and find an object named string to find its value. Hitting
return inside the box will accept that value or bring up an error message. If an error message appears,
adding another arrow, hitting return, and then deleting the arrow should work.

One noticeable thing about this network is that the Write_Image module will not connect to the
Uviewer. This suggests that another module is required to connect them. Under Main.Viewers is a
module called OutputField. It hasa purple input that matches one of the outputs from the UViewer, and a
black, blue, and green striped output that matches the Write_Image input. The OutputField module
outputs an AVS field of the image that the UViewer displays, and the Write_Image module turns it into a
picture. Once everything is absolutely perfect, and not going to break and leave random files all over the
harddrive, the “dynamic” option under OutputField should be toggled. This will update the field every
time the loop increments and causes Write_lmage to output a file. This process will create a numbered
series of images (gif, tif, or other) which can then be catenated by another program (e.g. Mediaconvert on
the SGI) to create an animation.

Method 2

The other method, which came built in with release 3.4 of AVS/EXPRESS is the animator and its
partner, image_capture. They do exactly what their names imply, animate something and then capture it.
Image_capture will also generate a movie after it creates a series of image files in AVS format. These

modules were intended to smoothly capture actions within the viewer window such as resizing, translating,

12

or fading an object. The animator module requires something in the viewer to change for each frame.

The animator module does not require any hookups. It works by allowing the user to create a
series of key frames. Once each frame is correct, click the generate frame button. If nothing has changed,
it will not generate the frame. It will generate the frame, however, if something has moved and then moved
back to its original position. This can become time consuming, but if the movie has to be done via these
two modules, it can be done. The animator interface has a toggle that puts all of its interface into a separate
window so that another interface can be open at the same time. The Transform interface (under the editors
menu) can change the positions of things numerically so that they can be changed back more easily. After
all of the frames are generated, click the play button to see if everything went correctly. If it did not, it has
to be done again.

The image_capture module plugs into the purple output on the UViewer. The module is
normally inactive. The name of the directory where the files will be placed should be entered in the movie
name field (include the final slash). With this module there is no choice, the files come out as avs files with
an extension of .x. These are for some reason colored differently then the image in the viewer so some
experimentation is required to get the desired colors in the movie. Toggle the capture mode from disk tb
memory to disk again to outsmart a known bug. To capture the animation, the mode needs to be set to
capture from view. If anything obscures the view while it is running, it will not be happy. The next step is
to run the animation and hopefully the files will be generated. If so, the button that generates a movie can
be pressed. It will leave an MPEG called anim.mpg in the directory with the images. This can also
produce single images. Whenever it is set to capture from view, it will create images of every change in
the viewer.

Streamlines

Those are the majority of the modules that were developed at the Center for Plasma Theory and
Computation, but there are many other visualization possibilities. For example, streamlines can be created
using the same macro that gathered and indexed data for the orthoslice. Streamlines requires vector data.
The data that comes from the Fill_up array module comes in the form of what should be vector data, but
in a 1D array. That array can be fed through a float that is forced with the object editor to be [n, x ny x

n,][3], and have a three element vector array which may then be used to create a field.

13

A few words on syntax

If a parameter (int, float, string) is going to be referencing something else, it needs a reference
arrow (=>). If it is referencing a sister object: one on the same level, or one on a lower level, the path
consists of a dot and the object name, which can be very long if the object is nested. If it is referencing a
higher object, it needs a directional (up) arrow and a dot (<-.) for every level it needs to go.

From inside an object, a reference still needs a referencing arrow, but also needs as many arrows
to get outside of the object it is nested in. Levels are separated by dots.

Values can be added by containing the string in quotation marks and adding the value reference

with a “+”.

Conclusion
In conclusion, the modules developed will assist the CPTC team by allowing them to create

visuals and movies quickly and fairly painlessly with a program that can be very difficult to use. They
now have the capability to animate 2D plots as well as incorporate them into movies. Electric and
magnetic field data from ICEPIC may be read in without modifications and can then be used with all of the
AVS modules after being converted to field format with the provided modules. This greatly increases the
possible uses of these data. These modules were combined, along with ICEPIC data to create a movie
which was shown at the AFOSR Mathematics and Computer Science Directorate Annual Review. That
application also provides a template for future movies that can be made completely through the interfaces.
In the near future, the computationalists at CPTC will, hopefully, use these modules so that they can be

improved and eventually developed as stand-alone applications.

Acknowledgements
This work was performed in conjunction with work funded in part by the Air Force Office of

Scientific Research Mathematics and Computer Science Directorate and the DoD High Performance
Computing Modemization Program. AVS/EXPRESS is a product of AVS, Inc. ICEPIC was developed
exclusively at the Center for Plasma Theory and Computation. Thanks to Kent Eschenberg and associates

at CEWES MSRC for assistance and the use of their AVS modules. And special thanks to Captain Jerry

Sasser.

14

References
[1] AVS/EXPRESS: User’s Guide. Advanced Visual Systems Inc. Part number 320-0321-04.

http://www.avs.com.

[2] James J. Havranek and Bradley J. Smith, “A Portable Parallel Particle in Cell Code,” ATAA paper#96-
0835 (Jan.1996).

[3] Raymond W. Lemke, et al, “Investigation of a Load-Limited, Magnetically Insulated Transmission Line

Oscillator (MILO),” IEEE Transactions on Plasma Science, 25, p. 364 (1997).

15

DISTRIBUTION LIST

AUL/LSE
Bldg 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424 lcy

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 2cys

AFSAA/SAI
1580 Air Force Pentagon
Washington, DC 20330-1580 lcy

AFRL/PSTL
Kirtland AFB, NM 87117-5776 2cys

AFRL/PSTP
Kirtland AFB, NM 87117-5776 1cy

Official Record Copy
AFRL/DEHE/Capt Gerald Sasser 10 cys

